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* Radon transfrom is the mathematical
foundation of tomographic method
such as CAT−Scan etc. . .  These 
applications have led to 
developments of several 
inverion methods for the 
Radon transfrom

* Here we use Radon transfrom
inversion method for 
Identification of Galatic binaries
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on the circle, for all circles.

integrals are known for all the points 
This is a new representation: where
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LISA Response as Radon transform

! Gravitational Wave detector are omni-directional:
LISA responds to the GW signal from all over the sky
h(t) =

∫
dθdφK(θ ,φ , t)

! LISA motion around the Sun introduces Doppler modulation:
i.e:

If a source is at sky position
(θ , φ)
Ωt −→Ω [t +ΦD (θ ,φ , t)]
with
ΦD = R sinθ cos(φ −ωt)
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This implies the integration not on t = constant on the (θ , φ , t)
space but on the surface t +ΦD (θ , φ , t) plane.
h(t) =

∫
dθdφK(θ ,φ , t +ΦD)

Mohanty and Nayak, Phys. Rev. D 73, 083006 (2006)

In the case of LISA the surfaces are not planes. We do a
coordinate transformation from (θ , φ) to a set of new Euclidean
like coordinate system




x
y
z



 =





√
2R sinθ cosφ√
2R sinθ sinφ√

2(t +ΦD)




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And the surface becomes a plane satisfying the condition

t = ξ · x

where

ξ =
1√
2
(−cosωt, −sinωt, 1)

And the signal becomes

h(t) =
∫

K(x)δ (t−ξ · x)dx

K(x)is signal from binaries in the new coordinate system.

! This Show that the LISA response is Radon transform of
Galatic binary signal
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! However, there is one major difference, in Standard Radon
transform t andξ are independent of each other and span the
complete domain where the signal defined. In our caseξ is
function of time. This leads to what is know as missing projec-
tions. i.e. we do not have all th realizations of Radon Trans-
form.
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Direct Fourier method:
Approximations needed for applying

∆ = ti to ti+1

Assume ξ constant in a small time interval

sampling freq << orbital freq

Fourier Domain

Fourier transform along each
line
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Signal From Binary

When the formalism was first developed we used only one state
of Polarization, i.e:

h(θ ,φ , t) = exp(2πiΩt)

Here we use the realistic source we have:

hI(θ ,φ , t) = h+(θ ,φ , t)FI
+(θ ,φ , t)+h×(θ ,φ , t)FI

×(θ ,φ , t)

! It can be shown tha the response is still a Radon transform.

! We can also understand how to generalize to arbitrary detector
motion.
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Correlating two detector output:
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Noise estimation from Symmetric Sagnac
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Simulation with a distribution of binaries

! Signal is generated for a distribution of binaries with 100 bina-
ries.

! Sky locations are generated Randomly.

! distribution along the frequency is generated from 2 mHz with
various separations.

! Reconstruction was done for 200 Frequency bin starting from
2 mHz.



14



15



16

Simple detection method:
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A modified CLEAN
method has been devel-
oped Hayama, please
see the poster
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Figure 1: Histogram of reconstructed image around the source
location for SNR=8
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Error in estimated Sky position:
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! Amplitude modulation may be deconvolve from the recon-
structed image to obtain the polarization state, work under
progress.


